The 2016 Cold Springs Fire destroyed 8 homes and burned hundreds of acresΒΆ

The fire burned outside of Nederland in Boulder County, COΒΆ

@millie-spencer October 2023ΒΆ

The 2016 Cold Springs Fire

Image source: The Denver Post https://www.denverpost.com/wp-content/uploads/2016/07/001_fire.jpg?w=810

This project uses Normalized Difference Vegetation Index (NDVI) to assess vegetation recovery post-wildfireΒΆ

'/home/jovyan/earth-analytics/data/coldsprings-fire'
OBJECTID agency comments active mapmethod datecurrent uniquefireidentifier fireyear incidentname pooownerunit ... state inciwebid localincidentidentifier irwinid incomplex complexfirecode latest shape__Area shape__Length geometry
0 1003 C&L N Unknown 1468540800000 2016-COBLX-000457 2016 Cold Springs COBLX ... CO 4848 000457 221c1b99-d2fe-4abe-9ef1-31225b812dcd N Y 3.640322e+06 14922.590938 MULTIPOLYGON (((-105.48912 39.98666, -105.4888...

1 rows Γ— 26 columns

Make this Notebook Trusted to load map: File -> Trust Notebook

Vegetation AnalysisΒΆ

This analysis utilizes Normalized Difference Vegetation Index (NDVI) data in Red and Near-Infrared (NIR) spectra to assess vegetation recovery post-wildfire. This data is collected by the MODIS sensor on NASA's Aqua satellite, and can be accessed from NASA's APPEEARS API: https://appeears.earthdatacloud.nasa.gov/.

<earthpy.appeears.AppeearsDownloader at 0x7f8a256533a0>
<xarray.Dataset>
Dimensions:      (x: 20, y: 6, date: 40)
Coordinates:
    band         int64 1
  * x            (x) float64 -105.5 -105.5 -105.5 ... -105.5 -105.5 -105.5
  * y            (y) float64 39.99 39.98 39.98 39.98 39.98 39.98
    spatial_ref  int64 0
  * date         (date) datetime64[ns] 2015-05-17 2015-06-02 ... 2020-08-20
Data variables:
    NDVI         (date, y, x) float32 0.5777 0.5777 0.6125 ... 0.4966 0.6005
xarray.Dataset
    • x: 20
    • y: 6
    • date: 40
    • band
      ()
      int64
      1
      array(1)
    • x
      (x)
      float64
      -105.5 -105.5 ... -105.5 -105.5
      array([-105.496875, -105.494792, -105.492708, -105.490625, -105.488542,
             -105.486458, -105.484375, -105.482292, -105.480208, -105.478125,
             -105.476042, -105.473958, -105.471875, -105.469792, -105.467708,
             -105.465625, -105.463542, -105.461458, -105.459375, -105.457292])
    • y
      (y)
      float64
      39.99 39.98 39.98 39.98 39.98 39.98
      array([39.986458, 39.984375, 39.982292, 39.980208, 39.978125, 39.976042])
    • spatial_ref
      ()
      int64
      0
      crs_wkt :
      GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]
      semi_major_axis :
      6378137.0
      semi_minor_axis :
      6356752.314245179
      inverse_flattening :
      298.257223563
      reference_ellipsoid_name :
      WGS 84
      longitude_of_prime_meridian :
      0.0
      prime_meridian_name :
      Greenwich
      geographic_crs_name :
      WGS 84
      horizontal_datum_name :
      World Geodetic System 1984
      grid_mapping_name :
      latitude_longitude
      spatial_ref :
      GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AXIS["Latitude",NORTH],AXIS["Longitude",EAST],AUTHORITY["EPSG","4326"]]
      GeoTransform :
      -105.4979166568558 0.002083333333139592 0.0 39.98749999628133 0.0 -0.002083333333139592
      array(0)
    • date
      (date)
      datetime64[ns]
      2015-05-17 ... 2020-08-20
      array(['2015-05-17T00:00:00.000000000', '2015-06-02T00:00:00.000000000',
             '2015-06-18T00:00:00.000000000', '2015-07-04T00:00:00.000000000',
             '2015-07-20T00:00:00.000000000', '2015-08-05T00:00:00.000000000',
             '2015-08-21T00:00:00.000000000', '2016-06-01T00:00:00.000000000',
             '2016-06-17T00:00:00.000000000', '2016-07-03T00:00:00.000000000',
             '2016-07-19T00:00:00.000000000', '2016-08-04T00:00:00.000000000',
             '2016-08-20T00:00:00.000000000', '2017-05-17T00:00:00.000000000',
             '2017-06-02T00:00:00.000000000', '2017-06-18T00:00:00.000000000',
             '2017-07-04T00:00:00.000000000', '2017-07-20T00:00:00.000000000',
             '2017-08-05T00:00:00.000000000', '2017-08-21T00:00:00.000000000',
             '2018-05-17T00:00:00.000000000', '2018-06-02T00:00:00.000000000',
             '2018-06-18T00:00:00.000000000', '2018-07-04T00:00:00.000000000',
             '2018-07-20T00:00:00.000000000', '2018-08-05T00:00:00.000000000',
             '2018-08-21T00:00:00.000000000', '2019-05-17T00:00:00.000000000',
             '2019-06-02T00:00:00.000000000', '2019-06-18T00:00:00.000000000',
             '2019-07-04T00:00:00.000000000', '2019-07-20T00:00:00.000000000',
             '2019-08-05T00:00:00.000000000', '2019-08-21T00:00:00.000000000',
             '2020-06-01T00:00:00.000000000', '2020-06-17T00:00:00.000000000',
             '2020-07-03T00:00:00.000000000', '2020-07-19T00:00:00.000000000',
             '2020-08-04T00:00:00.000000000', '2020-08-20T00:00:00.000000000'],
            dtype='datetime64[ns]')
    • NDVI
      (date, y, x)
      float32
      0.5777 0.5777 ... 0.4966 0.6005
      array([[[0.5777, 0.5777, 0.6125, ..., 0.5903, 0.6251, 0.6251],
              [0.5862, 0.5862, 0.6345, ..., 0.5689, 0.5689, 0.5689],
              [0.5862, 0.5862, 0.6414, ..., 0.6036, 0.5858, 0.5886],
              [0.6297, 0.6297, 0.6297, ..., 0.5858, 0.5858, 0.5858],
              [0.3006, 0.302 , 0.302 , ..., 0.5164, 0.5164, 0.5164],
              [0.5335, 0.5335, 0.2571, ..., 0.5602, 0.5602, 0.5602]],
      
             [[0.6487, 0.6351, 0.6   , ..., 0.5981, 0.7256, 0.6167],
              [0.5525, 0.6115, 0.6115, ..., 0.694 , 0.7878, 0.6437],
              [0.4831, 0.4624, 0.6401, ..., 0.6717, 0.6685, 0.6685],
              [0.5965, 0.256 , 0.256 , ..., 0.6266, 0.64  , 0.64  ],
              [0.5784, 0.5656, 0.5656, ..., 0.6176, 0.6086, 0.6086],
              [0.4864, 0.4864, 0.5174, ..., 0.6082, 0.6082, 0.6308]],
      
             [[0.7273, 0.7428, 0.7428, ..., 0.7318, 0.7259, 0.7259],
              [0.7085, 0.7674, 0.7674, ..., 0.7062, 0.6979, 0.6979],
              [0.7571, 0.7571, 0.7176, ..., 0.7062, 0.7222, 0.6868],
              [0.7717, 0.7794, 0.7794, ..., 0.6666, 0.5927, 0.5927],
              [0.6295, 0.6295, 0.6295, ..., 0.6   , 0.6   , 0.6   ],
              [0.5708, 0.5708, 0.5708, ..., 0.6565, 0.6565, 0.6925]],
      ...
              [0.5835, 0.5629, 0.4473, ..., 0.5898, 0.5625, 0.5376],
              [0.5689, 0.4988, 0.418 , ..., 0.6076, 0.6121, 0.6163],
              [0.5946, 0.4988, 0.4988, ..., 0.6076, 0.4692, 0.4692],
              [0.5969, 0.5267, 0.5267, ..., 0.3875, 0.5858, 0.5858],
              [0.5478, 0.5478, 0.5482, ..., 0.5362, 0.5362, 0.602 ]],
      
             [[0.6009, 0.6098, 0.6046, ..., 0.6745, 0.6745, 0.6143],
              [0.5622, 0.5615, 0.394 , ..., 0.6149, 0.6149, 0.5668],
              [0.5925, 0.4769, 0.4612, ..., 0.5927, 0.5927, 0.6001],
              [0.6118, 0.4725, 0.4725, ..., 0.4761, 0.4761, 0.4761],
              [0.6118, 0.5365, 0.5365, ..., 0.4333, 0.4333, 0.4333],
              [0.5725, 0.5725, 0.5365, ..., 0.6277, 0.6277, 0.6277]],
      
             [[0.6012, 0.5744, 0.5744, ..., 0.6487, 0.7008, 0.6201],
              [0.5367, 0.5434, 0.5434, ..., 0.5755, 0.6585, 0.6201],
              [0.5883, 0.462 , 0.439 , ..., 0.5605, 0.5605, 0.5445],
              [0.6335, 0.4529, 0.4529, ..., 0.5115, 0.5115, 0.5115],
              [0.6335, 0.5225, 0.5225, ..., 0.3766, 0.3766, 0.3766],
              [0.5957, 0.5957, 0.4837, ..., 0.4966, 0.4966, 0.6005]]],
            dtype=float32)
    • x
      PandasIndex
      PandasIndex(Index([-105.49687499018924, -105.49479165685611, -105.49270832352296,
             -105.49062499018981, -105.48854165685668, -105.48645832352355,
              -105.4843749901904, -105.48229165685726, -105.48020832352412,
             -105.47812499019099, -105.47604165685784,  -105.4739583235247,
             -105.47187499019157, -105.46979165685843, -105.46770832352529,
             -105.46562499019214, -105.46354165685901, -105.46145832352587,
             -105.45937499019273, -105.45729165685958],
            dtype='float64', name='x'))
    • y
      PandasIndex
      PandasIndex(Index([ 39.98645832961476,  39.98437499628162, 39.982291662948484,
             39.980208329615344, 39.978124996282205, 39.976041662949065],
            dtype='float64', name='y'))
    • date
      PandasIndex
      PandasIndex(DatetimeIndex(['2015-05-17', '2015-06-02', '2015-06-18', '2015-07-04',
                     '2015-07-20', '2015-08-05', '2015-08-21', '2016-06-01',
                     '2016-06-17', '2016-07-03', '2016-07-19', '2016-08-04',
                     '2016-08-20', '2017-05-17', '2017-06-02', '2017-06-18',
                     '2017-07-04', '2017-07-20', '2017-08-05', '2017-08-21',
                     '2018-05-17', '2018-06-02', '2018-06-18', '2018-07-04',
                     '2018-07-20', '2018-08-05', '2018-08-21', '2019-05-17',
                     '2019-06-02', '2019-06-18', '2019-07-04', '2019-07-20',
                     '2019-08-05', '2019-08-21', '2020-06-01', '2020-06-17',
                     '2020-07-03', '2020-07-19', '2020-08-04', '2020-08-20'],
                    dtype='datetime64[ns]', name='date', freq=None))
No description has been provided for this image
geometry
0 MULTIPOLYGON (((-105.49589 39.97558, -105.4958...
<Axes: xlabel='year'>
No description has been provided for this image

Peak green NDVI dropped by approximately 0.13 inside the boundary immediately post-fire.ΒΆ

Vegetation Index continued declining after the 2016 fire, hitting a low-point in 2017. Although NDVI increased slightly in 2018 and again in 2019, vegetation declined once again in 2020 perhaps due to land development. Upon further analysis of Google Earth imagery, it is unclear why the NDVI increased and then dropped again, as the landscape looks visually quite similar over the course of 2016-2020, with no apparent vegetation regrowth post-fire.